Asymptotics for the number of row-Fishburn matrices
نویسندگان
چکیده
In this paper, we provide an asymptotic for the number of row-Fishburn matrices of size n which settles a conjecture by Vit Jeĺınek. Additionally, using q-series constructions we provide new identities for the generating functions for the number of such matrices, one of which was conjectured by Peter Bala.
منابع مشابه
Self-Dual Interval Orders and Row-Fishburn Matrices
Recently, Jeĺınek derived that the number of self-dual interval orders of reduced size n is twice the number of row-Fishburn matrices of size n by using generating functions. In this paper, we present a bijective proof of this relation by establishing a bijection between two variations of upper-triangular matrices of nonnegative integers. Using the bijection, we provide a combinatorial proof of...
متن کاملCombinatorial Structures and Generating Functions of Fishburn Numbers, Parking Functions, and Tesler Matrices
COMBINATORIAL STRUCTURES AND GENERATING FUNCTIONS OF FISHBURN NUMBERS, PARKING FUNCTIONS, AND TESLER MATRICES. Paul Levande James Haglund This dissertation reflects the author’s work on two problems involving combinatorial structures. The first section, which was also published in the Journal of Combinatorial Theory, Series A, discusses the author’s work on several conjectures relating to the F...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملOn nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملLinear preservers of g-row and g-column majorization on M_{n,m}
Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014